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The possibi l i t ies  of detonation taking place in a mater ia l  charac te r i zed  by a shock adiabatic 
containimg a sharp break  (leading to a double shock-wave configuration) a re  examined. The 
range of possible veloci t ies  D of a serf-sustaining detonation in the second shock wave is 
determimed; D may be subsonic with respec t  to the original mater ia l .  However, even for  
an a rb i t r a r i l y  low veloci ty of sound the range of subsonic D values above the break  point 
on the ad[abat is ex t remely  limited: The minimum detonation velocity Dmin coincides 
(apart f rom a fac tor  of 0.5-0.8) with the velocity of a longitudinal sound wave in the or ig i -  
nal mate r ia l  below the b reak  point. This limitation with regard  to D is associa ted  with the 
format ion of a wave of ra re fac t ion  in the react ion products.  For  D < Dmi n the shock wave 
of ra re fac t ion  reaches  the Jouguet point and breaks  the s teady-s ta te  complex of the det-  
onation wave. The resul ts  obtained a re  valid not only for  weak, but also for powerful, explo- 
sive substances,  if (by vir tue of any kind of losses) low-velocity fo rms  of detonation a re  
rea l ized  in these ma te r i a l s .  

The detonation of condensed low-power explosives involves cer ta in  singulari t ies associa ted  with the 
s trength charac te r i s t i c s  of the explosive mate r i a l s  (solid explosives), or  with phase t ransformat ions  of the 
f i r s t  kind, leading to a break in the shock adiabat. Depending on the heat q of the i r r eve r s ib l e  chemical  
reaction,  the intensity of the uniaxial compress ion  (r * (or p r e s s u r e  in the case of a liquid) in the shock 
wave may  be either sma l l e r  o r  g rea te r  than the elast ic  limit (or the p re s su re  at the onset of the phase 
transi t ion).  Subsequently, in o rde r  to be perfect ly  specific,  we shall identify the break point on the shock 
adiabat with the elast ic  limit of a solid. The mutual disposition of the shock adiabat I and the detonation 
adiabat ]5 for  cr < ~ * is i l lus t ra ted in Fig. 1. F rom the pract ical  point of view the case  of ~ < ff * is not 
very  interesting,  since any explosive suitable for a rb i t r a r i ly  long s torage reac ts  ve ry  slowly in an elast ic 
wave, and the rea l  dimensions of the charge are  always smal ler  than cr i t ical .  

Other  conditions being equal, a r i se  in the value of q in a substance with normal  thermodynamic  prop-  
e r t ies  will co r respond  to a "higher" position of the detonation adiabat on the a v plane in a g rea t e r  s t r e ss  a 
in the shock wave. The derivative da/dq is continuous up to the point q =q*,  corresponding to the break on 
the shock adiabat. A slight fu r ther  increase  in q corresponds  to a sharp change in ~ f rom ~ * to values 
lying above point 3 (Fig. 1), and the creat ion of an anomalously high chemical  peak. The rate of the i t -  
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revers ib le  chemical  react ion also increases  abruptly at this point; this c rea tes  a very  severe  instabil i ty 
of the plane front (leading edge} [1-3], and should lead to l a rge - sca le  pulsations in the detonation wave at 
q~ q*. This fo rm of detonation (with an anomalously large chemical  peak} may be hard  to produce under 
labora tory  conditions for  a number  of prac t ica l  reasons .  

However, over a cer ta in  range of q values there  is yet another possibili ty,  namely,  that a detonation- 
induced t ransformat ion  of the mater ia l  associa ted with the splitting of the shock wave in the lat ter  may oc-  
cur.  During the r i se  in the chemical  peak f rom point 2" to point 3 (Fig. 1), the shock wave propagating 
with respect  to the original  state I is unstable and decomposes  into two shock waves [4-7]. The f i r s t  
("elastic"} wave converts  the mater ia l  f rom state 1 into state 2*.  Fur ther  compress ion  occurs  in the sec -  
ond wave, i.e., the wave propagating with respec t  to state 2*.  In the range of intensities 2*-3 ,  including 
point 3 itself, the second wave moves more  slowly than the f i rs t ,  so that the configuration of the two s teady-  
state waves as a whole is nonstat ionary (transient).  The comparat ively  high compress ib i l i ty  in the second 
wave leads to a considerable  r i se  in t empera ture ,  which may be especial ly large at individual points in 
macroscop ic  inhomogeneities,  for  examplej in the neighborhood of macroscop ic  defects, such as cracks  
and pores .  Local heating of this kind c rea tes  favorable kinetic conditions for  detonation in the second wave. 

In the coordinate sys tem in which the mater ia l  behind the leading edge of the f i rs t  shock wave is at 
res t ,  the self-sustaining,  s teady-s ta te  detonation in the second wave is descr ibed by the detonation adiabat 
II, charac te r i zed  by an initial state 2" and the condition that the Ray le igh-Miche l son  straight  line should 
be tangential to it (Jouguet condition, Fig. 2). Depending on the heat of react ion and the value of the break 
in the shock adiabatic at point 2" ,  the rate  of detonation in the second wave D may be either g rea te r  than 
or  less than the velocity of sound in the original  state 1. The value of D cannot, of course,  be smal le r  than 
the propagation velocity of the weak wave of unilateral  compress ion  in s tate  2" ,  however slight the heat 
evolution. However, there is also a more  severe  limitation on the rate  of detonation in the second wave, 
associa ted  with the fact that (for thermodynamic  and gasdynamic reasons} a se l f -susta ining detonation in 
the second wave is impossible  if the heat evolution g is less  than a cer ta in  minimum value qmin (2) . We 
may most  readi ly  convince ourse lves  of the impossibi l i ty of detonation for very  low heat evolution in the 
second wave on the basis  of the following qualitative considerat ions.  Fo r  an infinitely smal l  value of q the 
intensity of heat evolution in the second wave would be infinitely smal l  and equalto qp ID (here p I is the 
density of the original  explosive}. This would then by no means suffice to ~feed" the f i rs t  shock wave, the 
total  energy ~" of wt~ich increases  in unit t ime by a finite amount 

d~ : p. [E* (u.)2 
d-T + ~---5--J (D* - -  D). 

Here D* is the velocity of the f i rs t  shock wave; u*, E*,  and p * a re  the mass  velocity, the internal 
energy of unit mass ,  and the density of the mater ia l  in the f i rs t  wave, respect ively .  

In o rde r  to find the minimum heat evolution qmin (2} for  which the sel f -susta ining form of detonation 
becomes possible in the second wave, and also the associa ted  minimum rate  of detonation, let us consider  
the interaction of the subsonic zone of the react ion with the following wave of rarefact ion.  If the shockwave 
of the detonation complex does not split into two, this kind of interaction usually only takes place at the 
Jouguet point (adjacent to the region of supersonic flow) in a centered wave of rarefact ion,  which has no 
influence on the rate of propagation of the detonation [8, 9]. However, for  a low heat evolution the isen- 
t ropic  line of the detonation products  (Fig. 3) lies close to the original  shock adiabat, and in the present  
case there  will, accordingly,  be an anomalous shape of the curve, containing a break point or  a region in 
which the second derivative of the p re s su re  with respect  to volume is negative.  For  this kind of isentropie 
line it is quite impossible (with the aid of mere ly  one centered wave of rarefaction) to sat isfy the conditions 
corresponding to the sel f -susta ining mode of propagation of a detonation wave, bounded f rom the r e a r  by 
a s ta t ionary wall or  vacuum. According to the boundary conditions, on isentropie expansion f rom the 
Jouguet point the mate r ia l  passes  through an anomalous region of the adiabat, in which [10, 11, 5] a shock 
wave of rarefact ion is formed f rom the continuous wave. The amplitude of the shock wave of rarefact ion 
in the vacuum increases  until (for a specified original  state of the compres sed  material)  the velocity of  
the wave relat ive to the ra ref ied  substance behind it becomes  sonic. Fur the r  expansion of the mater ia l  may  
occur  in the continuous wave of rarefact ion.  Relative to the compressed  gas the shoekwave  of rarefac t ion  
is supersonic .  A s teady-s ta te  detonation p rocess  may occur  if the velocity of the shock wave of r a r e f a c -  
tion does not exceed the rate of propagation of the s teady-s ta te  detonation complex, determined by the 
Jouguet condition. O the rwi se ,  the wave of rarefact ion over takes  this complex and disrupts it. The des i red  
minimum value of the heat evolution for detonation at the open end of a tube in contact with vacuum is de te r -  
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mined by equating the velocities of the Jouguet detonation and the shock wave of rarefaction. This equation 
is represented graphically (Fig. 3) by the fact that the 2*-a section of the Rayleigh-Michelson straight 
line characterizing the detonation complex and the analogous segment a-b characterizing the shock wave 
of rarefaction form a single common straight line. For small relative deformations and a low heat evolu- 
tion, the rarefaction shock adiabats drawn from differing initial states differ very little from one another. 
In Fig. 3 these adiabats are approximately represented in the form of a single curve similar in shape to 
the shock adiabats 1-2" and 2"-2 of the original substance, but lying above them. 

The equ~-l-veloeity criterion determining the minimum heat evolution and the geometrical interpreta- 
tion of this equation (Fig. 3) also applies to the case of detonation at the closed end of a tube, but subject 
to the condition that the lower tangent point b may actually be reached during the expansion of the detona- 
tion products, i.e., that the gas velocity has not become negative at point b (directed from the end into the 
tube). This imposes a certain limitation on the compression in the first shock wave, expressed by the in- 
equality 

u ~  If'(%-%)(%--v~), (1) 

in which u a is the velocity of the gas at the Jouguet point (v is the specific volume) : 

,,o | , 1' (2) 

Substituting (2) into (1) and r emember ing  that 

instead of (1) we obtain 

( % -  o*)/(v* -v,~) = (%-%)/(vb-v.). 

, / /  t7* - -  ~1 / /  O a - -  O* 
(3) 

Inequality (3) is always satisfied if v b < vl, since, for  the direction of the break in the shock adiabat 
under considerat ion ((1 * -(y l ) / (v l -v*5  > (~a -or *)/(v * -VaS. 

In o rde r  to calculate the minimum detonation velocity in the second wave at the open end of the tube 
[or at the closed end subject to condition (3)], we express  the shock adiabats of the original  mate r ia l  in the 
neighborhood of the break point 2" in the fo rm 

(~-+-= o* +a'-(v--v*) -}-b• 2, (4) 

b• 

The signs (+) in (4) indicate that the corresponding quantities have two values, the (+) sign relating to the 
shock adiabat above the break point 2" and the (-5 sign to the shock adiabat 1 - 2 " .  

An analogous expansion for  the shock rarefact ion adiabat having its initial state at the Jouguet point 
may  be writ ten in the following way: 

u+-=e* ~-a• v*)-~b• +/(v)q =a* + / ~ * ) q -  A : ( v - -  ~*) ~B• -~,)2, (5) 

A• a• --] (v )q, 

B:~__ b~ " ~ 9 - 4  (v )q/_ > O. 

Here the (+5 and (-) signs re fe r  to par ts  of the rarefact ion shock adiabat lying above and below the 
break  point v*, respect ively .  Expansion (5) follows from (4) on r emember ing  that, fo r  smal l  relat ive de- 
format ions,  the shock adiabat of the original  substance and the rarefact ion shock adiabat of the reaction 
products lie close to the corresponding isentropic curves,  and that both these isentropes merge  into one 
at q =0. The value of v* usually differs  f rom v* by a small amount proport ional  to q: 

-v*--v*=Lq. 

The value of the coefficient L is determined by the t empera tu re  dependence of the elastic limit (or 
the shape of the phase-equi l ibr ium curve) and the equation of state of the react ion products .  The function 
f(v) is determined by the equation of s tate  of the react ion products and the equation of the rarefact ion shock 
adiabat having its initial state at the Jouguet point. 

By equating the slopes of the tangents drawn from point 2" to the branches of the rarefact ion adia- 
batics ~+ and c 7-, we may obtain an equation for the minimum value of q in the second wave. Omitting the 
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simple calculations, we shall now present  this equation, which was obtained by 
allowing for  s imply the lowest powers of the small  quantity q: 

A + --21: c z + B + q = A - - - - 2 ]  ~z- B -  q, 

cz• ~ ] ( v * ) - - A •  L - B =  LZq ~ .  / ( v * ) - - A :  L ~ O. 

(6) 

The lat ter  inequality follows (for smal l  q values) f rom the fact that 
~=~ > ~ 4- for  any value of v. 

Corresponding to the heat evolution q =qmin satisfying Eq. (6), we find the 
minimum detonation velocity D for  the react ion in the second wave, 

A - _ A  + 
Drain = v* 1" / - -  A+ + -;-~/ + U*. 

/ 1 a -B-  'o~+B + (7) 

Here u* is the mass  velocity behind the leading edge of the f i rs t  wave: 

u* = D * ( v l - -  v*)hk  ~ D1. 

For  the small  values of q considered here  we have A + ~ a • . T r a n s f o r m -  
ing with due r ega rd  to this approximation f rom A + and A- to the velocit ies c+ 
and c_ of the longitudinal sound waves of the original  mater ia l  at the point 2* 
(these velocit ies being respect ively  determined by allowing ~ to approach cr * 
f rom above and below), f rom Eq. (7) we obtain 

- ~ 2 _ c+2 (8 )  
n m i n  = C~ ~- - 

i + V~z- !~- I~+B + + 
U*. 

It follows f rom Eq. (8) that, for  the direct ion of the break in the shock adiabat under consideration,  
i.e., for  c+< c_, the minimum detonation velocity in the sound wave is g rea te r  than sonic, 

Drain ~ C+. 

The lowest value of the minimum detonation velocity in the second wave Drain =Dmi~ is reached 
when the proper t ies  of the original  substance are  such that the velocity of sound above the break  point is 
very low (e+/c_) 2-* 0. Then we have 

r C 

Dmi~ = ]//1 @ V-~-B- /cz+B + + U* ~ - . .  ] / '~ _ V~-~-I~+R+ (9) 

We note that c_ is the maximum rate of propagation of longitudinal sound vibrations in an elast ical ly  
deformed mater ia l .  

The coefficients B + and B- of expansion (5) are  usually quantities of the same order .  The same is 
t rue of the coefficients e + and a - .  The possible quantitative difference between e+B + and a - B -  is fu r ther -  
more  great ly  "smoothed" in the double extract ion of the root in Eqs. (8) and (9). Substitution of a+B += 
e - B -  in (9) gives 

Drain ~ c_ / ]f2. (10) 

We see f rom the s t ruc ture  of Eqs. (7)-(9) that varying the rat io e - B - / e + B  + over  a ve ry  wide range 
(e.g., 0.1-10) and allowing for  the e r r o r  in the approximation A • a • employed in deriving (8) and (9) only 
changes the resul t  expressed  in Eq. (10) by a fac tor  very  close to unity. 

Apart f rom the foregoing lower limit, there  is, of course ,  an upper  limit to the detonation velocity 
in the second wave. This limit coincides with the maximum velocity of the "elastic" shock wave D*. For  
D > D* the second wave over takes  the f i rs t ,  and corresponding to the s teady-s ta te  c lass ica l  one-dimen-  
sional detonation we have the ord inary  detonation complex with a single shock wave. 

The upper limit of heat evolution qmax in the second wave corresponding to the l imit  D =Dma x is 
g rea te r  than the heat evolution q* for detonation in the f i rs t  ("elastic") wave of maximum amplitude (r =~ * 
The difference between qmax and q* is the g rea te r  the smal le r  the maximum elastic deformation of the 
original  substance.  The r a t e s  of detonation for  q = q m a x  and q =q* a re  the same,  and equal to D*, but the 
intensit ies of the shock waves a re  substantial ly different.  This ambiguity in the form of dependence of q 
on the detonation velocity is associa ted  with the break or  bend in the detonation adiabat. The possibil i ty 
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that  the  s a m e  P~ayleigh-Michelson s t ra igh t  line m a y  touch the two detonation adiabats  is i l lus t ra ted  in 
Fig.  4. The ambiguous dependence of q on the veloci ty  of the detonation wave D is i l lus t ra ted  schemat ica l ly  
in Fig. 5. The number s  r e f e r  to pa r t s  of the q(D) curves  co r respond ing  to the following modes of detona-  
tion d i scussed  iin the p reced ing  pa rag raphs :  1) detonation within the range  q < q* in the f i r s t  shock wave; 
2) detonation with an anomalous ly  la rge  chemica l  peak; 3) detonation in the second shock wave; 4) detona- 
tion with a no rma l  chemica l  peak; 5) detonation for  q values  each of which co r r e sponds  to only one Joug~et 
point. 

In conclusion,  we note that  the foregoing laws r e l a t e  not only to weak, but also to s t rong,  explosives ,  
if, under  ce r ta in  specif ic  conditions, the so -ca l l ed  slow modes  of detonation a r e  r ea l i zed  in the la t ter  (see 
[12-15] and the l i t e ra tu re  ci ted in those  pape r s ) .  In a number  of powerful  condensed explos ives  we en- 
counter  [14] subsonic modes  of detonation ( re la t ive  to the veloci ty  of longitudinal sound waves in the o r ig i -  
nal ma te r i a l ) .  Apar t  f r o m  a f ac to r  c lose  to unity, the detonation veloci t ies  then agree  with the values de-  
duced f rom Eq. (10}. 
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